

Electrophoresis 34:1483–1492Īasebo E, Vaudel M, Mjaavatten O et al (2014) Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Loroch S, Dickhut C, Zahedi RP et al (2013) Phosphoproteomics – more than meets the eye. Pawson T, Scott JD (2005) Protein phosphorylation in signaling – 50 years and counting. Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Vaudel M, Sickmann A, Martens L (2014) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Mol Biosyst 3:518–522īarsnes H, Martens L (2013) Crowdsourcing in proteomics: public resources lead to better experiments. Martens L, Hermjakob H (2007) Proteomics data validation: why all must provide data. Proteomics 11:1094–1098Ĭraig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data.

Ghesquiere B, Helsens K, Vandekerckhove J et al (2011) A stringent approach to improve the quality of nitrotyrosine peptide identifications. Knudsen GM, Chalkley RJ (2011) The effect of using an inappropriate protein database for proteomic data analysis. Muth T, Benndorf D, Reichl U et al (2013) Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Nucleic Acids Res 32:D115–D119įlicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 37:D499–D508Īpweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase.

Reddy TB, Riley R, Wymore F et al (2009) TB database: an integrated platform for tuberculosis research. Huala E, Dickerman AW, Garcia-Hernandez M et al (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Bioinformatics 23:e191–e197Ĭolaert N, Degroeve S, Helsens K et al (2011) Analysis of the resolution limitations of peptide identification algorithms. Kohlbacher O, Reinert K, Gropl C et al (2007) TOPP – the OpenMS proteomics pipeline.
#SEARCHGUI REFERENCE SOFTWARE#
Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Mancuso F, Bunkenborg J, Wierer M et al (2012) Data extraction from proteomics raw data: an evaluation of nine tandem MS tools using a large Orbitrap data set. Vaudel M, Venne AS, Berven FS et al (2014) Shedding light on black boxes in protein identification. Shteynberg D, Nesvizhskii AI, Moritz RL et al (2013) Combining results of multiple search engines in proteomics. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 13:22–24ĭiament BJ, Noble WS (2011) Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res 3:958–964Įng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. Kim S, Mischerikow N, Bandeira N et al (2010) The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. J Proteome Res 6:654–661ĭorfer V, Pichler P, Stranzl T et al (2014) MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. BMC Bioinf 9:163Ĭraig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Sturm M, Bertsch A, Gropl C et al (2008) OpenMS – an open-source software framework for mass spectrometry. J Am Soc Mass Spectrom 5:976–989ĭeutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10:650–670Įng J, McCormack AL, Yates JR III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Vaudel M, Sickmann A, Martens L (2010) Peptide and protein quantification: a map of the minefield. Mueller LN, Brusniak MY, Mani DR et al (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data.
